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Abstract The problem of laminar natural convection from a vertical circular cone maintained at
either a uniform surface temperature or a uniform surface heat flux, and placed in a thermally
stratified medium is considered. The governing non-similarity boundary layer equation for
uniform surface temperature are analyzed by using two distinct solution methodologies; namely, (i)
a finite difference method and (ii) a local non-similarity method. For uniform surface heat flux
case, the solutions of the governing non-similarity boundary layer equations are obtained by using
three distinct solution methodologies, namely, (i) a finite difference method, (ii) a series solution
method and (iii) an asymptotic solution method. The solutions are presented in terms of local skin-
friction and local Nusselt number for different values of Prandtl number and are displayed
graphically. Effects of variations in the Prandtl number and stratification parameter on the velocity
and temperature profiles are also shown graphically. Solutions obtained by finite difference method
are compared with the other methods and found to be in excellent agreement.
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Nomenclature
B ¼ Stratification rate
Cf ¼ Skin friction
F ¼ Dimensionless stream function
g ¼ Acceleration due to gravity
Grx ¼ Local Grashof number
Nux ¼ Nusselt number
Pr ¼ Prandtl number
r ¼ Radius of the cone
T ¼ Temperature of the fluid
Tw ¼ Surface temperature
T1 ¼ Temperature of the ambient fluid
T1,0 ¼ Ambient temperature at x ¼ 0
u ¼ Velocity component in the

x-direction

V ¼ Velocity component in the
y-direction

x ¼ Coordinate along a cone ray
y ¼ Coordinate normal to cone surface

Greek symbols
a ¼ Thermal diffusivity of fluid
b ¼ Coefficient of thermal expansion
g ¼ Cone apex half-angle
h ¼ Similarity variable
F ¼ Dimensionless temperature

function
k ¼ Thermal conductivity
n ¼ Kinematic viscosity

The authors are indebt to the reviewers for their valuable comments and constructive suggestion
for present pice of work. They also expressed their heartiest indebtness to Dr. D. A. S. Rees
(Unicversity of Bath, U. K) for helping in inproving the manuscript up to the present standard.

HFF
12,3

290

Received April 2001
Accepted December 2001

International Journal of Numerical
Methods for Heat & Fluid Flow,
Vol. 12 No. 3, 2002, pp. 290-305.
q MCB UP Limited, 0961-5539
DOI 10.1108/09615530210422965



1. Introduction
Many free convection processes occur in environments with temperature
stratification. Good examples are closed containers and environmental
chambers with heated walls. Also of interest is free convection associated
with heat rejection systems for long-duration deep ocean power modules where
the ocean environment is stratified. Stratification of the fluid arises due to a
temperature variation, concentration differences or the presence of different
fluids.

Cheesewright (1967) presented a theoretical investigation of laminar free
convection from a vertical plane in non-isothermal surroundings. He obtained
similarity solutions of the governing equations dealing with various types of
non-uniform ambient temperature distributions. Eichhorn (1969) studied the
effect of linear thermal stratification on the heat transfer of a vertical plate and
obtained solutions for three terms in the series expansions of the partial
differential equations. Subsequently, Fujii et al. (1974) considered the effect of
non-linear thermal stratification on the problem of (Eichhorn, 1969) and
obtained solutions for four terms of the series expansion. Later, Chen and
Eichhorn (1976) re-studied the problem of (Eichhorn, 1969) and obtained the
solutions using the local non-similarity method developed by Sparrow et al.
(1971); Minkowycz and Sparrow (1974). Yang et al. (1972) investigated the
natural convection heat transfer from a non-isothermal vertical flat plate
immersed in a thermal stratified medium. In their work, extensive numerical
calculations based on similarity solutions had been carried out for a wide
range of wall and ambient temperature distributions for Prandtl numbers
between 0.1 and 20. Jaluria and Himasekhar (1983) studied the problem of
natural convection flow in a plane thermal plume and flow over a heated
vertical plate in an arbitrary, but stably stratified environment. In their paper,
numerical solutions of the governing partial differential equations were
obtained by finite difference methods for two values 6.7 and 0.7 of the Prandtl
number, which correspond to water and air, respectively, at normal temperature.
Kulkarni et al. (1986) investigated the problem of natural convection from an
isothermal flat plate suspended in a linearly stratified fluid using the Von
Karman–Pohlhausen integral solution method. Venkatachala and Nath (1981)
studied the case of non-similar laminar natural convection in a thermally
stratified fluid, taking into account the effect of mass transfer by using the
implicit finite -difference scheme developed by Keller and Cebeci (1972). Later,
Angirasa and Srinivasan (1989) presented a numerical study of the double-
diffusive natural convection flow adjacent to a vertical surface in thermally
stratified ambient. They considered situations where the two buoyant
mechanisms aid as well as oppose each other. They studied the role of ambient
thermal stratification by considering the simple case of linear temperature
variation. Recently, the problem of Non-darcy free convection in a thermally
stratified porous medium along a vertical plate with variable heat flux has been
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investigated by Hung and Chen (1997). They obtained the numerical solutions
by implicit finite difference method.

Theoretical studies on laminar free convection flow on axisymmetric bodies
have received wider attention, especially in case of non-uniform surface
temperature and surface heat flux distributions. Mark and Prins (1953, 1954)
developed the general relations for similar solutions on isothermal axisymmetric
forms and showed that for the flow past a vertical cone has such a solution.
Approximate boundary layer techniques utilized to obtain an expression for
the dimensionless heat transfer. Braun et al. (1961) contributed two more
isothermal axisymmetric bodies for which similar solutions exist, and used an
integral method to provide heat transfer results for these and the cone over a
wide range of Prandtl number. In the above investigation, the authors obtained
the results by numerical integration of the differential equations for a fluid
having Prandtl number 0.72. The similarity solutions for free convection from
the vertical cone have been exhausted by Hering and Grosh (1962). They showed
that the similarity solutions to the boundary layer equations for a cone exist when
the wall temperature distribution is a power function of distance along a cone ray.
In their paper they presented the results for isothermal surface as well as for the
surface maintained at the temperature varying linearly with the distance
measured from the apex of the cone for Prandtl number 0.7. Latter, Hering (1965)
extended the analysis to investigate for low Prandtl number fluids. On the other
hand, Roy (1974) has studied the same problem for high values of the Prandtl
number. Na and Chiou (1979a) studied the effect of slenderness on the natural
convection flow over a slender frustum of a cone. Later, Na and Chiou (1979b)
studied the laminar natural convection flow over a frustum of a cone. In the above
investigations the constant wall temperature as well as the constant wall heat flux
were considered. On the other hand, Alamgir (1989) investigated the overall heat
transfer in laminar natural convection flow from vertical cones by using the
integral method. Recently, Hossain and Paul (2000a,b) have investigated the
natural convection flow from a heated vertical permeable circular cone. The
solutions were obtained against the local variable j that represents the streamwise
distribution of the transpiration velocity.

Here, we investigate the effect of stratification on convection from a vertical
circular cone with either a uniform surface temperature or a uniform surface
heat flux, a topic which has not yet been discussed in the literature. The
ambient temperature is taken as linear function of the distance measured from
the apex of the cone. The governing non-similarity boundary layer equations
for uniform surface temperature are analyzed by using two distinct solution
methodologies; namely, (i) a finite difference method and (ii) a local non-
similarity method. For uniform surface heat flux case, the solutions of the
governing non-similarity boundary layer equations are obtained by using three
distinct solution methodologies, namely, (i) a finite difference method, (ii) a
series solution method and (iii) an asymptotic solution method. The solutions
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are presented in terms of local skin-friction and local Nusselt number for
different values of Prandtl number and are displayed in graphically. Solutions
obtained by finite difference method are compared with the other methods and
found to be in excellent agreement. Effects of stratification parameter and
Prandtl number on velocity and temperature profiles are also shown graphically,
computed by only finite difference technique.

2. Mathematical formalism
Consider a steady two-dimensional laminar natural convection flow along a
vertical cone with either a uniform surface temperature or a uniform surface
heat flux, and which is immersed in a thermally stratified medium. The
ambient temperature of the medium is T(x ) where x is the distance measured
from the apex of the cone. The effect of viscous dissipation on thermal
boundary layer is neglected. The physical coordinates (x, y ) are chosen such
that x is measured from the apex of the cone, O, in the stream wise direction and
y is measured normal to the surface of the cone. The coordinate system and the
flow configuration are shown in Figure 1.

Under the boundary layer approximations the flow is governed by the
following boundary layer equations

›ðurÞ

›x
þ

›ðvrÞ

›y
¼ 0 ð1Þ

u
›u

›x
þ v

›u

›y
¼ n

›2u

›y2
þ gb cos gðT 2 T1Þ ð2Þ

u
›T

›x
þ v

›T

›y
¼ a

›2T

›y2
ð3Þ

where u, v are the fluid velocity components in the x- and y-directions,
respectively, n is the kinematic coefficient of viscosity, g is the acceleration due
to gravity, b is the coefficient of volume expansion, a is the thermal diffusivity,
g is the cone apex half-angle and T is the temperature of the fluid.

Figure 1.
Physical model and
co-ordinates system
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As pointed out by Hering and Grosh (1962), several simplifications have
incorporated into Equations (1)–(3). Under the assumption that the boundary
layer is thin relative to the local cone radius, the local radius to a point in the
layer has been replaced with the value at a cone surface, r(x ). Evidently, this
condition is not satisfied in the neighborhood of the cone tip. Further, since the
fluid-density difference, which is deriving force for natural convection has been
replaced with the product bðT 2 T/Þ, the equations are limited to small values
of this term for liquids but arbitrary values of gases. Finally, because the
pressure gradient across the boundary layer has been taken as negligible, the
equations are strictly applicable to cones of small apex angles.

Complete definition of the problem requires specification of the boundary
conditions, which are as follows

u ¼ 0; v ¼ 0; T ¼ Tw and q ¼ 2k
›T

›y

� �
at y ¼ 0

u ¼ 0; T ¼ T1ðxÞ ¼ T1;0 þ Bx as y !1 ð4Þ

where Tw and q are the surface temperature and surface heat flux, respectively,
T1,0 is the ambient fluid temperature at the apex of the cone and Bð¼ ›T1=›xÞ
is a constant which represents the stratification rate.

Case 1: Uniform surface temperature. We can introduce the following
transformations

c ¼ nrGr1=4
x f ðj;hÞ; T 2 T1ðxÞ ¼ ðTw 2 T1;0Þuðj;hÞ

h ¼
y

x
Gr1=4

x ; j ¼
Bx

Tw 2 T1;0
; Grx ¼

gb cos gðTw 2 T1;0Þx
3

n2
; r ¼ x sin g

ð5Þ

where Grx is the local Grashof number, j is the dimensionless stratification
parameter, h is the pseudo-similarity variable and c is the stream function
defined by

u ¼
1

r

›c

›y
and v ¼ 2

1

r

›c

›x
ð6Þ

Finally, the functions f ðj;hÞ and uðj;hÞ are, respectively, the dimensionless
stream function and the temperature function of the fluid in the boundary layer
region.

Substituting the transformations given in (5) into (1)–(4), we obtained the
following non-similarity system of equations

f 000 þ
7

4
ff 00 2

1

2
f 02 þ u ¼ j f 0

›f 0

›j
2 f 00

›f

›j

� �
ð7Þ
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1

Pr
u00 þ

7

4
fu0 2 j f 0 ¼ j f 0

›u

›j
2 u

›f

›j

� �
ð8Þ

The corresponding boundary conditions to be satisfied are as given below:

f ¼ f 0 ¼ 0; u ¼ 1 2 j at h ¼ 0

f 0 ¼ 0; u ¼ 0 as h!1 ð9Þ

where Pr ð¼ n=aÞ is the Prandtl number.
For j ¼ 0, the Equations (7) and (8) subjected to the boundary condition (9)

have been solved by Hossain and Paul (2000a) for a non-isothermal surface.
For the present case, j , 1 is the practical limit for the upward boundary

layer flow. When j . 1, buoyancy forces act downwards as the ambient fluid is
hotter than the heated surface. Because of this characteristic we present results
only for j , 1.

Solutions of the local non-similar partial differential Equations (7)–(8)
subject to the boundary conditions (9) are obtained by using the implicit finite
difference method known as the Keller-box scheme developed by Keller and
Cececi (1972). This method has also been used recently by Hossain and Paul
(2000a,b), Hossain et al. (2000c), Hossain and Takhar (1996). The equations are
also solved by local non-similarity solution (LNS) procedure developed by
Sparrow et al. (1971), Minkowycz and Sparrow (1974).

Once we know the values of the functions f and u and their derivatives, it is
important to calculate the values of the local skin-friction and local Nusselt
number from the following relations:

1

2
CfxGr1=4

x ¼ f 00ðj; 0Þ ð10Þ

Nux

Gr
1=4
x

¼ 2u0ðj; 0Þ ð11Þ

Results obtained by the methods mentioned above are presented graphically in
Figures 2(a) and (b) for different values of Prandtl number (i.e. Pr ¼ 0:01, 0.1,
0.70, 7.0).

Case 2: Uniform surface heat flux. For natural convection flow along a
vertical cone with uniform surface heat flux, the following transformations
may be introduced

c ¼ nrGr1=5
x Fðj;hÞ;T 2 T1ðxÞ ¼

qx

k
Gr21=5

x Fðj;hÞ
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h ¼
y

x
Gr1=5

x ; j ¼
Bk

q
Gr1=5

x ¼
ðT1 2 T1;0Þk

qx
Gr1=5

x

Grx ¼
gb cosgqx4

kn2
; r ¼ x sin g ð12Þ

where Grx is the local Grashof number, j is the dimensionless stratification
parameter, h is the pseudo-similarity variable. F(j,h ) and F(j,h ) are,
respectively, the dimensionless streamfunction and temperature of the fluid in
the boundary layer region. c is the streamfunction defined in Equation (6).

Substituting the transformation (18) into (1)–(4), yields the following non-
similar system of equations

F 000 þ
9

5
FF 00 2

3

5
F 02 þF ¼

4

5
j F 0 ›F 0

›j
2 F 00 ›F

›j

� �
ð13Þ

1

Pr
F00 þ

9

5
FF0 2

1

5
F 0F2 j f 0 ¼

4

5
j F 0 ›F

›j
2F0 ›F

›j

� �
ð14Þ

and the corresponding boundary conditions transform to

F ¼ F 0 ¼ 0; F0 ¼ 21 at h ¼ 0

F 0 ¼ 0; F ¼ 0 as h!1 ð15Þ

where Pr ð¼ n=aÞ is the Prandtl number.
For j ¼ 0, Equations (19) and (20) subject to the boundary condition (21)

were solved by Hossain and Paul (2000b) for non-isothermal surfaces.
Solutions of the locally non-similar partial differential Equations (19) and

(20) subject to the boundary conditions (21) are obtained using the Keller-box

Figure 2.
(a) Local skin friction and
(b) Local Nusselt number
for different values of the
Prandtl number against
stratification parameter j
for the uniform surface
temperature case

� �
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elimination technique. The values of the local skin-friction and local Nusselt
number from the following relations:

1

2
Cf Gr1=5

x ¼ F 00ðj; 0Þ ð16Þ

Nux

Gr
1=5
x

¼
1

Fðj; 0Þ
ð17Þ

Results obtained by this method are presented graphically in Figures 3(a) and
(b) for different values of Prandtl number (i.e. Pr ¼ 0:01; 0:1; 0:70; 7:0).
Below, we present the solutions valid for the small stratification parameter j
as well as for the large stratification parameter j.

2.1 Solution for small values of j
Since near the apex of the cone, j is small for small x or small B or both, series
solution of Equations (19) and (20) may be obtained by using perturbation
method treating j as a perturbation parameter. Hence, we expand the functions
F(j,h ) and F(j,h ) in powers of j, that is, we take

Fðj;hÞ ¼
X1
i¼0

j iFiðhÞ and Fðj;hÞ ¼
X1
i¼0

j iFiðhÞ ð18Þ

Substituting the above expansion into Equations (19) and (20) and equating the
various powers of j up to O(j ), we obtain the following sets of equation

F 000
0 þ

9

5
F0F

00
0 2

3

5
F 02

0 þF0 ¼ 0 ð19Þ

Figure 3.
(a) Velocity profile and
(b) Temperature profile

for different values of
stratification parameter j

while Prandtl number
Pr ¼ 0:7 for the uniform
surface temperature case.
The curves for Pr ¼ 0:7

at j ¼ 0:0 are due to
Hossain and Paul

(Hossain and Paul,
2000a)

�
�

�
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1

Pr
F00

0 þ
9

5
F0F

0
0 2

1

5
F 0

0F0 ¼ 0 ð20Þ

F0ð0Þ ¼ F 0
0ð0Þ ¼ 0; F0

0ð0Þ ¼ 21

F 0
0ð1Þ ¼ 0; F0ð1Þ ¼ 0 ð21Þ

F 000
1 þ

9

5
F0F

00
1 þ

7

5
F 00

0F1 2 2F 0
0F

0
1 þF1 ¼ 0 ð22Þ

1

Pr
F00

1 þ
9

7
F0F

0
1 þ

13

5
F0

0F1 2 F 0
0F1 2

1

5
F0F

0
1 2 f 00 ¼ 0 ð23Þ

F1ð0Þ ¼ F 0
1ð0Þ ¼ 0; F0

1ð0Þ ¼ 0

F 0
1ð1Þ ¼ 0; F1ð1Þ ¼ 0 ð24Þ

The coupled Equations (25) and (26) are nonlinear, whereas (28) and (29) are
linear. These equations are solved pair-wise one after another using the implicit
Runge-Kutta-Butcher (Butcher (1974)) initial value solver together with the
Nachtsheim-Swigert (Nachtsheim and Swigert (1965)) iteration scheme. Thus
solutions are obtained for fi and ui ði ¼ 0; 1Þ and their derivatives.

Knowing the value of Fi and Fi for i ¼ 0, 1 and their derivatives, we can
calculate the local skin-friction coefficient and the heat transfer from the
following expressions

1

2
Cf Gr1=5

x ¼ F 00ðj; 0Þ ¼ F 00
0ð0Þ þ jF 00

1ð0Þ ð25Þ

Figure 4.
(a) Velocity profile and
(b) Temperature profile
for different values of
Prandtl number while
stratification parameter
j ¼ 0:4 for the uniform
surface temperature case

�

�
�

�
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Nux

Gr
1=5
x

¼
1

Fðj; 0Þ
¼ 1=½F0ð0Þ þ jF1ð0Þ� ð26Þ

The resulting values of local skin-friction and local Nusselt number for
different values of the Prandtl number Pr ð¼ 0:01; 0:1; 0:7; 7:0Þ are
depicted in Figures 5(a) and (b). These results are compared with the
corresponding values obtained from finite difference solution.

2.2 Solution for large values of j
In this section attention has been given to the behaviour of the solution to
Equations (19) and (20) when j is large. An order of magnitude analysis of the
various terms in these equations shows that the largest is jF0, in (20). This term
has to be balanced and the only way to do this is to assume that, h is small and
hence h-derivatives are large. Given that F ¼ Oðj21Þ as j!1; it is necessary
to find the appropriate scaling F, F and h. On balancing the F0 00, F terms in (19)
and F00, jF0 in (20), it is found that h ¼ Oðj1=4Þ, F ¼ Oðj21Þ and F ¼ Oðj21=4Þ
as j!1: Therefore, the following substitutions are made

F ¼ j21 ~Fðj; ~hÞ; F ¼ j21=4 ~Fðj; ~hÞ; ~h ¼ j1=4h ð27Þ

Substituting this transformation into Equations (19) and (21), we get the
following equations

~F 000 þ ~Fþ
4

5
j25=4 ~F ~F 00 ¼

4

5
j21=4 ~F 0 ›

~F 0

›j
2 ~F 00 ›

~F

›j

� �
ð28Þ

Figure 5.
(a) Local skin friction and
(b) Local Nusselt number

for different values of
Prandtl number against

stratification parameter j
for the uniform surface

heat flux case

�

�

�
�

� �
�

� �

�
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1

Pr
~F00 2 ~f 0 þ

4

5
j25=4 ~F ~F0 ¼

4

5
j21=4 ~F0 ›

~F

›j
2 ~F0 ›

~F

›j

� �
ð29Þ

The corresponding boundary conditions are

~Fðj; 0Þ ¼ ~F 0ðj; 0Þ ¼ 0; ~F0ðj; 0Þ ¼ 21

~F 0ðj;1Þ ¼ 0; ~Fðj;1Þ ¼ 0 ð30Þ

where primes denote differentiation with respect to h̃.
Since j is large, the functions F̃(j,h̃ ) and F̃(j,h̃ ) are expanded in a power

series in negative powers of j, that is, we take

~Fðj; ~hÞ ¼
X1
i¼0

j25=4i ~Fið ~hÞ and ~Fðj; ~hÞ ¼
X1
i¼0

j25=4i ~Fið ~hÞ ð31Þ

Now substitution of the above expansion into Equations (34) to (36) and
equating of the coefficients of various powers of j up to O(j 25/4) yields the
following equations

~F 000
0 þ ~F0 ¼ 0 ð32Þ

1

Pr
~F00

0 2
~f 00 ¼ 0 ð33Þ

~F0ð0Þ ¼ ~F 0
0ð0Þ ¼ 0; ~F0

0ð0Þ ¼ 21

~F 0
0ð1Þ ¼ 0; ~F0ð1Þ ¼ 0 ð34Þ

~F 000
1 þ

4

5
~F0
~F 00

0 þ
~F1 ¼ 0 ð35Þ

1

Pr
~F00

1 þ
4

5
~F0

~F0
0 2

~F 0 ¼ 0 ð36Þ

~F1ð0Þ ¼ ~F 0
1ð0Þ ¼ 0; ~F0

1ð0Þ ¼ 0

~F 0
1ð1Þ ¼ 0; ~F1ð1Þ ¼ 0 ð37Þ

The solutions of Equations (38) to (43) are

F 00
0ðj; 0Þ ¼

1ffiffiffiffiffi
Pr

p ð38Þ

F0ðj; 0Þ ¼

ffiffiffi
2

p

Pr1=4
ð39Þ
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F 00
1ðj; 0Þ ¼

6ð1 2 11PrÞ

75
ffiffiffi
2

p Pr27=4 þ
16

25
ffiffiffi
2

p Pr23=4 ð40Þ

F1ðj; 0Þ ¼
4ð1 2 11PrÞ

75
Pr23=2 þ

12

25
Pr21=2 ð41Þ

Thus the local skin-friction and local Nusselt number are as follows

1

2
Cf Gr1=5

x ¼ F 00ðj; 0Þ ¼ j21=2 1ffiffiffiffiffi
Pr

p þ j25=4 6ð1 2 11PrÞ

75
ffiffiffi
2

p Pr27=4 þ
16

25
ffiffiffi
2

p Pr23=4

� �� �
ð42Þ

Nux

Gr
1=5
x

¼
1

Fðj; 0Þ
¼ j1=4=

ffiffiffi
2

p

Pr1=4
þ j25=4 4ð1 2 11PrÞ

75
Pr23=2 þ

12

25
Pr21=2

� �" #

ð43Þ

The asymptotic solutions obtained from the above expressions for different
values of Prandtl number are compared with the solution of the finite difference
method in Figure 5(a) and (b).

3. Results and discussion
In the present paper, we have investigated the problem of laminar natural
convective flow and heat transfer from a vertical circular cone immersed in a
thermally stratified medium with either a uniform surface temperature or a
uniform surface heat flux. For the case of a uniform surface temperature, the
solutions are obtained by means of a finite difference method and the local non-
similarity method. The solutions, for uniform surface heat flux case, obtained
by using: first, the finite difference method for all j, second, the perturbation
method for small j and, third, the asymptotic method for large j, of the
momentum and energy equations. The results are presented in terms of the
local skin-friction, local Nusselt number, velocity profile and temperature
profile. The comparison between the finite difference solutions to the solutions
by other methods is found to be excellent.

3.1 Uniform surface temperature
The numerical values of local skin-friction, CfxGr

1=4
x =2 and local Nusselt

number, Nux=Gr
1=4
x ; against stratification parameter j for different values of

Prandtl number Pr ð¼ 0:01; 0:1; 0:7; 7:0Þ are displayed in Figures 2(a) and
(b) respectively. These figures show that the results obtained by the finite
difference method and the local non-similarity method are in excellent agreement.
From Figures 2(a) and (b) we observe that both the local skin-friction and local
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Nusselt number decrease with increases in j. Figure 2(a) shows that an increase
in the value of Prandtl number, Pr, leads to a decrease in the value of local skin-
friction. On the other hand, from Figure 2(b) it can be observed that the value of
local Nusselt number increases with the increasing values of Prandtl number.

To observe the effect of stratification parameter on the dimensionless
velocity profile, f 0ðj; hÞð¼ ux=nGr

1=2
x Þ; and the dimensionless temperature

profile, uðj; hÞ [¼ (T 2 T1(x ))/(Tw2T1,0)]; in the flow field, computed only
by the finite difference method. The numerical values of the dimensionless
velocity and temperature distributions are shown graphically in figure 3(a) and
(b), respectively, against h at j ¼ 0:0, 0.4, 0.8 while Pr ¼ 0:7. From Figure 3(a)
and (b), we observe that the fluid velocity and temperature profiles decrease
with increasing values of the stratification parameter j. In figure 3(a), it can
also be observed that at each value of j there exist local maxima in the velocity
profile within the boundary layer region. These maximum values are 0.39268,
0.29193 and 0.14746 at ðh; jÞ ¼ ð1:09948; 0:0Þ; (1.22203, 0.4) and (1.50946,0.8),
respectively. In Figure 3(b), negative values of non-dimensional temperature
appear in the ‘wings’ of the profile. This occurrence is often referred to as
‘temperature defect’.

The effects of varying the Prandtl number, Pr ð¼ 0:01; 0:1; 0:7Þ; on the
dimensionless velocity, f 0(j, h ) and the dimensionless temperature, u(j, h ),
distributions against h at j ¼ 0:4 are shown in Figures 4(a) and (b). Figures
4(a) and (b) show that when Prandtl number increases, then boththe velocity
profile and temperature profile decreases. It can also be observed from the
Figure 4(a) that for each value of Pr there exist local maxima in velocity profile
within the boundary layer region. For Pr ¼ 0:01, 0.1 and 0.7, the maximum
values occur at h ¼ 1:67876, 1.47355 and 1.22202, and they are 0.78296, 0.52460
and 0.29193, respectively. We further observe that, both the momentum and
thermal boundary layer thicknesses decrease with the increasing values of Pr.

3.2 Uniform surface heat flux
The numerical values of local skin-friction, Cf Gr

1=5
x =2 and local Nusselt

number, Nux=Gr
1=5
x ; against stratification parameter j for different values of

Pr ð¼ 0:01; 0:1; 0:7; 7:0Þ are depicted in Figures 5(a) and (b), respectively.
From these figures it can be seen that the results for the series solution method
as well as the asymptotic method are in excellent agreement with the finite
difference solutions. Figure 5(a) shows that the values of local skin-friction,
Cf Gr

1=5
x =2; decrease to the asymptotic value as j increases. With increasing

values of the Prandtl number, Pr, it can be seen that the value of local skin
friction decreases. From Figure 5(b) we observe that the value of local Nusselt
number increases as j increases. This figure also shows that as Pr increases the
value of local Nusselt number also increases.

Now attention is given to the effect of stratification parameter on the
dimensionless velocity profile, f 0ðj; hÞ ð¼ ux=nGr

2=5
x Þ and the dimensionless
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temperature profile, uðj; hÞ ½¼ kðT 2 T1ðxÞÞGr
1=5
x =qx�; in the flow field,

obtained by the finite difference method. The numerical values of dimensionless
velocity and temperature distribution are depicted graphically in Figure 6(a)
and (b), respectively, against h for values of j ¼ 0:0; 5:0; 10:0; 20:0 while
Pr ¼ 0:7: From Figure 6(a) it can be seen that the velocity profiles decrease
with the increase in stratification parameter j. It can also be seen that at each
value of j there exist local maximum values in velocity profile in the boundary
layer region. These maximum values are 0.50547, 0.17134, 0.10423 and 0.06256
at ðh; jÞ ¼ ð0:94233; 0:0Þ; (0.78384, 5.0); (0.67251, 10.0) and (0.56663, 20.0),
respectively. Figure 6(b) shows that the temperature profiles decrease as the
stratification parameter j increase. As in the case of isothermal surface, in
the present case also negative values of non-dimensional temperature appear in
the outer edge of the profile for higher values of j. The reason of this occurrence
has already been explained in the earlier section. We further observe that the
momentum and thermal boundary layer thickness decreases with the increasing
values of j.

4. Conclusions
The present paper deals with the effect of stratification parameter, j, and
Prandtl number, Pr, on laminar free convection boundary layer flow from a
vertical circular cone with uniform surface temperature as well as with uniform
surface heat flux. The governing non-similar boundary layer equations for the
uniform surface temperature case are solved using a finite difference method
and a local non-similarity method. For the uniform surface heat flux case, the
solutions of the governing non-similar boundary layer equations are obtained
by using three distinct solution methodologies, namely, (i) a finite difference
method, (ii) a series solution method and (iii) an asymptotic solution method.

Figure 6.
(a) Velocity profile and
(b) Temperature profile

for different values of
stratification parameter j

while Prandtl number
Pr ¼ 0:7 for the uniform

surface heat flux case.
The curves for Pr ¼ 0:7

at j ¼ 0:0 are due to
Hossain and Paul

(Hossain and Paul,
2000b)

�
�

�

�
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We obtained the solutions by several methods to establish the accuracy of our
solution. The simulated results are expressed in terms of local skin friction,
local Nusselt number, velocity and temperature profile. From the present
investigations, it may concluded that:

(1) For both the uniform surface temperature and uniform surface heat flux
cones, the value of local skin-friction decreases with the increase in
stratification parameter, j, on the other hand, the value of local Nusselt
number decreases for the case of uniform surface temperature but for the
uniform surface heat flux case its value increases.

(2) An increase in the value of Prandtl number, Pr, leads to decrease in the
value of skin-friction coefficient but the value of local Nusselt number
increases with the increasing values of Prandtl number, Pr, for both the
uniform surface temperature and uniform surface heat flux cones.

(3) Both the velocity and the surface temperature of the fluid decreases due
to the increase in the suction parameter, j, for both cases.

(4) With the increase in the value of Prandtl number, Pr, both the
momentum and thermal boundary layer thickness decreases for uniform
surface temperature cone.
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